Chem. Ber. 105, 2085-2088 (1972)

Dieter Fenske und Hermann J. Becher

Zur Koordination des Bors im *triptych*-Boroxazolidin (Triäthanolaminborat) und dessen Addukt mit Antimonpentachlorid

Aus dem Anorganisch-Chemischen Institut der Universität Münster (Eingegangen am 21. Februar 1972)

Ergänzende spektroskopische Untersuchungen an $B(OC_2H_4)_3N$ (1) und seinem neu hergestellten 1:1-Addukt mit Antimonpentachlorid bestätigten für 1 eine pyramidale O_3B-N-A nordnung und wiesen für das Addukt eine trigonal-planare BO_3-A nordnung nach. Die thermische Zersetzung von 1 bei 240° ergibt in der Hauptsache Bortrioxid und einige Morpholinderivate.

The Coordination of Boron in *triptych*-Boroxazolidine (Triethanolamine Borate) and its Addition Compound with Antimony Pentachloride

Additional spectroscopic measurements of $B(OC_2H_4)_3N$ (1) and of the newly prepared 1:1-adduct with antimony pentachloride confirm a pyramidal O_3B-N -structure for 1 and a trigonal-planar BO_3 -structure for the adduct. The thermal decomposition of 1 yields B_2O_3 and some derivatives of morpholine.

Triäthanolamin bildet mit Borsäure den Triester B(OC₂H₄)₃N (1)¹), bei welchem zwei Anordnungen für die Bindungen am Boratom in Betracht gezogen werden können: Eine mit planarer BO₃-Gruppe, wie in der Borsäure selbst, und eine mit intramolekularer Koordination des Stickstoffatoms an das Bor, die zu einer pyramidalen O₃BN-Gruppe führt. Aus den Reaktionen der Verbindung hat man auf die letztere Struktur geschlossen ²). Ebenso aus dem IR-Spektrum, dessen Auswertung sich auf die beiden höchsten Valenzschwingungen der Gruppe O₃BN stützte, die durch ihre Frequenzverschiebungen bei einer Substitution von ¹¹B durch ¹⁰B zugeordnet werden konnten ³). Da wir uns wegen einer Strukturbestimmung näher mit dem Ester befaßten, untersuchten wir erneut sein IR-Spektrum und ergänzten es durch das Raman-Spektrum der normalen und der mit ¹⁰B angereicherten Verbindung. Durch die Kombination dieser Messungen ließen sich alle drei Valenzschwingungen der Gruppe O₃BN sicher zuordnen. Das Ergebnis ist in der Tabelle den entsprechenden Schwingungen in BF₃·NH₃ und BF₃·N(CH₃)₃⁴) gegenübergestellt.

¹⁾ C. A. Rojahn, Dtsch. Reichs-Pat. 582149 Kl. 12q, C. 104, II, 2704 (1933).

²⁾ H. Weidmann und H. K. Zimmerman jr., Liebigs Ann. Chem. 619, 28 (1958).

³⁾ E. Funck, Ber. Bunsenges. physik. Chem. 71, 170 (1967).

⁴⁾ W. Sawodny und J. Goubeau, Z. physik. Chem. [Frankfurt/M.] 44, 227 (1965).

Valenzschwingungen (cm⁻¹) der Gruppe O₃BN in 1 und in Vergleichssubstanzen (gemessen in CCl₄-Lösung und als KBr-Preßling mit einem Perkin-Elmer IR-Spektrometer 225; ramanspektroskopische Messung an der festen Verbindung mit einem Coderg-PHO Laser-Ramanspektrometer)

1 B(OC ₂ H ₄) ₃ N	BF ₃ ·N(CH ₃) ₃	BF ₃ ·NH ₃
vBN , v_sBO_3 : 650	νBN, ν _s BF ₃ : 695	vBN , v_sBF_3 : 738
ν _s BO ₃ , νBN: 883	ν _s BF ₃ , νBN: 932	ν _s BF ₃ , νBN: 982
ν _{as} BO ₃ : 1097	v _{as} BF ₃ : 1138	$v_{as}BF_3$: 1138

Aus dem Vergleich von $BF_3 \cdot N(CH_3)_3$ mit $BF_3 \cdot NH_3$ geht hervor, daß die Valenzschwingungen der Gruppe F_3BN durch die Schwingungsbewegung der weiteren Substituenten beeinflußt werden. Die noch weitergehenden Frequenzverschiebungen bei 1 sind daher verständlich und sicher nur zu einem kleineren Teil auf geänderte Massen, Kraftkonstanten und Valenzwinkel zurückzuführen. Durch die getroffene Zuordnung, die Isotopenverschiebung und den Vergleich wird somit die intramolekulare Koordination des N-Atoms an die BO_3 -Gruppe in 1 erneut bestätigt.

Wir befaßten uns weiter mit der Frage, ob die koordinative BN-Bindung in 1 durch einen am N- oder B-Atom angreifenden Reaktionspartner ohne sonstige Änderung im Molekül gelöst werden kann. Addukte von 1, bei denen eine Addition am Bor anzunehmen ist, sind noch nicht bekannt. Dagegen liegt in dem Hydrochlorid von 15) sicher eine Addition am Stickstoffatom vor. Als reine Verbindung konnte dieses Salz noch nicht dargestellt werden. Eigene Versuche hierzu führten ebensowenig zum Erfolg wie frühere Versuche von Hein und Burkhardt⁵⁾. Dagegen gelang es uns, 1 in Chloroform mit Antimonpentachlorid zu einem kristallinen Additionsprodukt der Zusammensetzung B(OC₂H₄)₃N·SbCl₅ umzusetzen. Im 1R-Spektrum der sehr feuchtigkeitsempfindlichen Substanz zeigt unterhalb von 1300/cm keine Bande eine meßbare Verschiebung, wenn man die Spektren der mit ¹¹B und ¹⁰B angereicherten Verbindung vergleicht. Dagegen zeigt sich im Bereich von 1400/cm bei zwei Banden eine ¹¹B/¹⁰B-Verschiebung. Eine von ihnen rückt im ¹⁰B-Derivat von 1325 nach 1337 und eine weitere von 1420 nach 1440/cm. Bei beiden muß demnach das Boratom mitschwingen, wenn auch in unterschiedlichem Ausmaß. Ganz entsprechende 11B/ 10B-Verschiebungen stellt man nun im Spektrum des Borsäure-triäthylesters fest⁶ wo eine Bande von 1342 nach 1350 und eine weitere von 1425 nach 1445/cm rückt. Zur höheren dieser beiden Schwingungen gehört als überwiegende Koordinate eine v_{as}BO₃-, zur tieferen eine hiermit gekoppelte γCH₂-Schwingung⁷⁾. Derartige sich in den Isotopenverschiebungen äußernde Kopplungen zwischen CH-Deformationsund Gerüstschwingungen kann man bei Borverbindungen öfter feststellen 7). Aus der beobachteten Übereinstimmung der genannten Banden von B(OC₂H₄)₃N·SbCl₅ und von B(OC₂H₅)₃ schließen wir, daß eine planare BO₃-Gruppe vorliegt und das Stickstoffatom als Donatoratom zum SbCl₅ wirkt.

Neben der intramolekularen B-N-Bindung in 1 wäre zur koordinativen Absättigung des Bors auch eine intermolekulare Verknüpfung über B-N-Bindungen denk-

⁵⁾ F. Hein und R. Burkhardt, Z. anorg. allg. Chem. 268, 159 (1952).

⁶⁾ W. J. Lehmann, H. G. Weiss und I. Shapiro, J. chem. Physics 30, 1222 (1959).

⁷⁾ H. J. Becher und H. T. Baechle, Z. physik. Chem. [Frankfurt/Main] 48, 359 (1966).

bar. Wir untersuchten deshalb das Verhalten von 1 bei höheren Temperaturen, um zu prüfen, ob es nach Öffnen der intramolekularen B-N-Bindung durch thermische Energie auch zu einer intermolekularen Verknüpfung kommen kann. In siedendem Anisol veränderte sich 1 auch nach Tagen nicht. Beim Erhitzen der lösungsmittelfreien Substanz im Einschlußrohr auf ~240° erfolgte eine wenig übersichtliche Zersetzung, als deren Produkte neben CO₂ und H₂O vor allem B₂O₃ und einige Morpholinderivate festgestellt wurden. Durch Modifizierung der Reaktionsbedingungen konnten aus 20 g 1 7 g flüssige, destillierbare Zersetzungsprodukte gewonnen werden, aus denen nach gaschromatographischer Trennung als Hauptbestandteile die bereits bekannten Morpholinderivate 2 und 3 isoliert wurden. Eine weitere, etwa in gleicher

$$OON^{-C_2H_4OH}$$
 $OON^{-C_2H_4^{-}N}OON^{-C_2H$

Menge anfallende Substanz wurde durch Massen-, ¹H-NMR- und IR-Spektrum als 4 charakterisiert, das noch nicht beschrieben war. Bei der oberhalb von 230° stattfindenden Pyrolyse von 1 erfolgt demnach eine Spaltung an der BO- und der OC-Bindung sowie eine bevorzugte Bildung des Morpholinsystems neben B₂O₃.

Wir danken Herrn Prof. Dr. B. Schrader, Institut für Spektrochemie und angewandte Spektroskopie, Dortmund, für die ramanspektroskopischen Messungen.

Beschreibung der Versuche

triptych-Boroxazolidin (Triäthanolaminborat) (1): Aus Borsäure-trimethylester und Triäthanolamin nach Hein und Burkhardt⁵). Schmp. 237°. Zur Darstellung des ¹⁰B-angereicherten Produkts wurde von käuflicher Borsäure mit 95% ¹⁰B-Anreicherung ausgegangen.

¹H-NMR (CDCl₃): t τ 6.06 und t 6.87 (J=5.6 Hz), OCH₂ und NCH₂. ¹¹B-NMR (CCl₄, innerer Standard BF₃·O(C₂H₅)₂): δ -16.1 ppm. Dieser Wert weicht beträchtlich von einer früheren Literaturangabe ⁸⁾ (-11.2 ppm) ab.

Triäthanolaminborat-Antimonpentachlorid: Zu 3.9 g 1 in 100 ccm absol. Chloroform wurde bei 40° unter Feuchtigkeitsausschluß langsam eine Lösung von 9.5 g Antimonpentachlorid in 60 ccm Chloroform gegeben. Molverhältnis 1: SbCl₅ ~1:1.3. Das entstandene farblose, kristalline Addukt wurde nach 4 Stdn. unter trockenem Stickstoff abfiltriert und zweimal mit CHCl₃ gewaschen. Ausb. 11.0 g (95%).

C₆H₁₂BNO₃·SbCl₅ (456.0) Ber. B 2.38 Cl 38.84 Sb 26.60 Gef. B 2.40 Cl 38.20 Sb 25.95

Thermische Zersetzung von triptych-Boroxazolidin (1): 20 g 1 wurden in einem Destillationskolben unter ständigem Durchleiten von Stickstoff 20 Stdn. auf 240° erhitzt. Dabei wurden 7 g Destillat erhalten. Dieses konnte im präparativen Gaschromatographen (Perkin-Elmer-F 21, SE 30-Säule) bei einer Säulentemperatur von 275° in 4 Hauptkomponenten aufgetrennt werden, deren relatives Mengenverhältnis in der Reihenfolge ihres Austritts aus der Säule 2:6:2:3 betrug. Von ihnen wurden die Fraktionen 2-4 wie folgt charakterisiert:

⁸⁾ T. P. Onak, H. Landesman, R. E. Williams und I. Shapiro, J. physic. Chem. 63, 1533 (1959).

Fraktion 2: 1-[2-Hydroxy-äthyl]-morpholin (2); n₂⁰ 1.478 (Lit.: 1.478); IR- und NMR-Spektrum stimmten mit dem einer authentischen Probe (Merck) überein.

Fraktion 3: 1.2-Dimorpholino-äthan (3); Schmp. 71° (Lit.: 73°); Schmp. des Pikrats 235 bis 237° (Lit.: 235°).

Fraktion 4: 2.2'-Dimorpholino-diäthyläther (4).

 $C_{12}H_{23}N_2O_3$ (244.3) Ber. C 58.98 H 9.86

Gef. C 59.00 H 9.82 Mol.-Gew. 244 (massenspektrometr.)

NMR (CCl₄): τ 6.36-6.65 (OCH₂) und 7.5-7.7 (NCH₂). — Das IR-Spektrum ähnelte in Bezug auf Frequenzbereich und Intensität der beobachteten Banden weitgehend dem von 3.

[50/72]